# Trade Liberalization and the Informal-Formal Job Ladder

Cristhian Seminario-Amez

October, 2020

#### Quasi-Experiment: Informality and Transitional Dynamics

► How does the availability of informal contracts affect **transitional dynamics in response to a large negative shock**?

I exploit two well-documented features for Brazil:

- 1. Heterogeneous enforcement of labor regulations across municipalities: Almeida and Carneiro (2012), Ulyssea and Ponczek (2018).
- 2. **Unilateral trade liberalization** episode: Dix-Carneiro and Kovak (2017, 2019), Ulyssea and Ponczek (2018).

## The trade liberalization episode in Brazil (1/2)

Between 1990 and 1995, the average import tariff in Brazil went from 30.5 to 12.8 percent; remaining stable afterwards. Correlation between tariff changes and pre-liberalization levels  $\sim -0.90$  [D-C & K (2017)].



Source: D-C & K (2017). Industries sorted based on 1991 national employment.

## The trade liberalization episode in Brazil (2/2)

► From D-C & K (2017), measures of **labor demand shocks at the** micro-region level induced by trade liberalization.

$$\underbrace{RTR_r}_{\substack{\text{Regional} \\ \text{Tariff} \\ \text{Reductions}} } = -\sum_{\substack{i \\ \text{Regional Weights based on} \\ \text{Industry Mix}} \underbrace{\frac{d \ln(1+\tau_i)}{\text{Lariff Change for}}}_{\substack{\text{Industry } i \text{ betlendustry } i \text{ betlendustry Mix} \\ \text{ween } 1990-1995}}, \qquad \beta_{ri} = \frac{\lambda_{ri} \frac{1}{\gamma_i}}{\sum_{j} \lambda_{rj} \frac{1}{\gamma_j}}$$

where  $\gamma_i$  denotes the cost share of nonlabor factors in industry i, and  $\lambda_{ri}$  the initial share of local employment of industry i in region r.

▶ In words: the higher the initial share of local employment in industries that experienced large tariff declines, the larger the negative shock on labor demand.

#### Enforcement heterogeneity across regions in Brazil

- Compliance is monitored through surprise visits to firms. "Inspectors are assigned to enforcement offices located in cities across Brazil. They choose which firms to visit ... [and] travel by car from their base city to the city where the inspected firm is located ... [They] face a performance-based pay scheme .. up to 45 percent of their wage is tied to the efficiency of the overall enforcement system [and] their monthly base wage is fairly competitive (between 2,490 and 3,289 dollars in 2004)" [Almeida and Carneiro (2012)].
- Motivated by this, previous work has instrumented the probability of being inspected with the distance of a firm's municipality to the closest enforcement office [e.g. Almeida and Carneiro (2012), Ulyssea and Ponczek (2018)].

#### Preliminary empirical exercise

- ▶ Today: Based on the distances computed by Almeida and Carneiro (2012), I divide municipalities in each state in two groups: those closer than the state-median municipality ( $I_{far} = 0$ ) and those farther away ( $I_{far} = 1$ ) ▶ Maps
- Consider the following regression, at the municipality-level, run separately for each  $t = \{1992, ..., 2017\}$

$$\underbrace{ \begin{array}{c} y_{mt} - y_{m1991} \\ \text{Change in Labor Market} \\ \text{Outcome Variable} \end{array} }_{\text{Change in Labor Market} \\ \text{Outcome Variable} \\ + \underbrace{ \begin{array}{c} \theta_{s(m)t} \\ \text{State FE} \end{array} }_{\text{Regional Tariff}} \underbrace{ \begin{array}{c} \theta_{t} \\ \theta_{t} \\ \theta_{t} \\ \text{Pre-Liberalization Trend} \end{array} }_{\text{Pre-Liberalization Trend}} + \underbrace{ \begin{array}{c} \theta_{t} \\ \theta_{t} \\ \theta_{t} \\ \theta_{t} \\ \text{Pre-Liberalization Trend} \end{array} }_{\text{Regional Tariff}} + \underbrace{ \begin{array}{c} \theta_{t} \\ \theta_{t} \\ \theta_{t} \\ \theta_{t} \\ \text{Pre-Liberalization Trend} \end{array} }_{\text{Pre-Liberalization Trend}} + \underbrace{ \begin{array}{c} \theta_{t} \\ \theta_{t} \\ \theta_{t} \\ \theta_{t} \\ \text{Pre-Liberalization Trend} \end{array} }_{\text{Pre-Liberalization Trend}} + \underbrace{ \begin{array}{c} \theta_{t} \\ \theta_{t} \\ \theta_{t} \\ \theta_{t} \\ \text{Pre-Liberalization Trend} \end{array} }_{\text{Pre-Liberalization Trend}} + \underbrace{ \begin{array}{c} \theta_{t} \\ \theta_{t}$$

where m indexes municipalities, and r(m) and s(m) the corresponding micro-regions and states. Similar to Dix-Carneiro and Kovak (2017).

#### Regional Earnings in Formal sector

- Ulyssea and Ponczek (2018): between 1991 and 2000, regions with weaker [stricter] enforcement observed a significant [no] increase in informal employment but no [significant] non-employment effects, among unskilled workers, in response to the trade liberalization shock.
- If indeed informal jobs facilitate the transition of workers across rungs of the job ladder: in the long run, weaker enforcement can be associated with better outcomes in the formal sector too ⇒ Today: Earnings.
- Data: employer-employee matched annual administrative data from Brazilian RAIS for the 1986-2017 period.
- **Earnings premia at the municipality level:** I run, for each  $t = \{1986, ..., 2017\}$ , the following worker-level regression

$$y_{it} = y_{m(i)t} + X_{it} + \eta_t + \zeta_{it}$$

Worker's Log
Monthly Real Earnings

Municipality FE

Sex, Age and Education
Groups Dummies

municipality FE  $y_{m(i)t}$  is the measure of earnings premia.

#### **Descriptive Stats**

|                                      | $I_{far}=0$                    |     |     | $I_{far}=1$        |      |     |     |     |
|--------------------------------------|--------------------------------|-----|-----|--------------------|------|-----|-----|-----|
| Variable                             | Mean                           | SD  | P25 | P75                | Mean | SD  | P25 | P75 |
| Distance (minutes)                   | 47                             | 32  | 27  | 63                 | 130  | 74  | 85  | 153 |
| Audits per 100 firms                 | 4.6                            | 5.2 | 1.1 | 6.5                | 3.1  | 4.4 | 0.2 | 4.1 |
| RTR * 100 ▶ Dens.                    | 6.7                            | 4.2 | 3.1 | 10.0               | 4.4  | 3.2 | 2.2 | 6.4 |
| % Female 1991                        | 27                             | 11  | 20  | 33                 | 26   | 11  | 19  | 33  |
| % 18 to 24 y-o 1991                  | 26                             | 7   | 22  | 30                 | 24   | 8   | 20  | 29  |
| % 18 to 29 y-o 1991                  | 46                             | 8   | 42  | 51                 | 45   | 9   | 41  | 50  |
| % HS Graduates 1991                  | 21                             | 11  | 14  | 27                 | 23   | 13  | 14  | 31  |
| dln(EarnPremia) <sub>2017</sub> *100 | 84                             | 31  | 66  | 105                | 88   | 27  | 72  | 106 |
| # Municipalities                     | 1313                           |     |     | 1307               |      |     |     |     |
| # Microregions: 390<br># States: 16  |                                |     |     |                    |      |     |     |     |
| dln(EarnPremia)*100                  | 49                             | 36  | 25  | 73                 | 51   | 36  | 27  | 76  |
| # m x t obs. PDens.                  | 34,138 ( <del>1313</del> * 26) |     |     | 33,982 (1307 * 26) |      |     |     |     |

**Source:** Distance (driving time in minutes) and audits per 100 firms in the municipality (for 2002) from A&C(2012); RTR at the micro-region level from D-C&K(2017); all other variables from RAIS 1991-2017.

#### Effect of TL shock on Formal Earnings Premia by $I_{far} = \{0, 1\}$

| $dln(EarnP)_{t,1991}$ | 2000    | 2005    | 2010    | 2015    |
|-----------------------|---------|---------|---------|---------|
| RTR                   | -0.8*** | -1.8*** | -2.3*** | -2.5*** |
|                       | (-3.6)  | (-7.1)  | (-7.7)  | (-7.2)  |
| lfar=1                | -0.0    | -0.0    | -0.0    | -0.0    |
|                       | (-0.5)  | (-0.8)  | (-0.9)  | (-1.2)  |
| $Ifar=1 \times RTR$   | 0.4     | 0.8***  | 1.2***  | 1.3***  |
|                       | (1.3)   | (2.7)   | (3.1)   | (3.1)   |
| Pre-Trend             | -0.3*** | -0.3*** | -0.3*** | -0.3*** |
|                       | (-4.8)  | (-3.6)  | (-3.9)  | (-4.5)  |
| DSC                   | -0.0    | -0.0    | -0.0*   | -0.0    |
|                       | (-0.4)  | (-1.6)  | (-1.7)  | (-0.9)  |
| $RTR \times DSC$      | 0.0     | 0.1**   | 0.2***  | 0.2**   |
|                       | (0.3)   | (2.2)   | (2.7)   | (2.3)   |
| N                     | 2620    | 2620    | 2620    | 2620    |
| Adj. R <sup>2</sup>   | 0.187   | 0.471   | 0.573   | 0.607   |

t stats in parentheses; "DSC" is the Distance to State Capital (i.e. a control); All regressions include state FE.

#### Effect of TL shock on Formal Earnings Premia by $I_{far} = \{0, 1\}$



Among local labor markets near to an enforcement office: an increase of  $10 \ p.p.$  in RTR (i.e. our negative shock measure) induces, by 2017, an average decrease of  $26 \ p.p.$  in the cumulative growth rate of formal earnings premia.

#### Effect of TL shock on Formal Earnings Premia by $I_{far} = \{0, 1\}$



Among local labor markets **far** from an enforcement office: **an increase of 10 p.p. in RTR** (i.e. our negative shock measure) induces, **by 2017**, an average decrease of **13 p.p.** in the cumulative growth rate of formal earnings premia.

#### Effect of TL shock on Earnings Premia [**Young**] by $I_{far} = \{0, 1\}$



Considering only the cohort of workers that were **less than 30 years-old** by 1991: the **gap between both groups increases**.

#### Robustness Checks

Main concern: according to the descriptive stats, "weak enforcement" municipalities experienced SMALLER negative TL shocks.

So far, three pieces of evidence suggest this is NOT what drives our results:

- 1. The coefficient for the  $I_{far}$  dummy in our main regression is **not significant**.

   Main Reg. Table
- 2. Conditional on controls, the observation is reversed: "weak enforcement" municipalities experienced **LARGER** negative TL shocks. Important to control for **distance to state capital** (DSC). RTR conditional densities
- 3. Running our main regression considering only **municipality pairs** (one from each enforcement group) **with comparable RTR shocks**, the main effect  $(\beta_t)$  remains significant. Main Figure paired municipalities RTR densities paired municipalities

#### Enforcement heterogeneity - Brazil





## Enforcement heterogeneity - Brazil, South East



#### Enforcement heterogeneity - Brazil, South





## Enforcement heterogeneity - Brazil, North East



## Enforcement heterogeneity - Brazil, Central-West





# Regional Tariff Reductions densities by $I_{far} = \{0, 1\}$



#### Ifar fixed effect not significant

| $dln(EarnP)_{t,1991}$ | 2000    | 2005    | 2010    | 2015    |
|-----------------------|---------|---------|---------|---------|
| RTR                   | -0.8*** | -1.8*** | -2.3*** | -2.5*** |
|                       | (-3.6)  | (-7.1)  | (-7.7)  | (-7.2)  |
| Ifar=1                | -0.0    | -0.0    | -0.0    | -0.0    |
|                       | (-0·5)  | (-0.8)  | (-0·9)  | (-1·2)  |
| $lfar{=}1 \times RTR$ | 0.4     | 0.8***  | 1.2***  | 1.3***  |
|                       | (1.3)   | (2.7)   | (3.1)   | (3.1)   |
| Pre-Trend             | -0.3*** | -0.3*** | -0.3*** | -0.3*** |
|                       | (-4.8)  | (-3.6)  | (-3.9)  | (-4.5)  |
| DSC                   | -0.0    | -0.0    | -0.0*   | -0.0    |
|                       | (-0.4)  | (-1.6)  | (-1.7)  | (-0.9)  |
| $RTR \times DSC$      | 0.0     | 0.1**   | 0.2***  | 0.2**   |
|                       | (0.3)   | (2.2)   | (2.7)   | (2.3)   |
| N                     | 2620    | 2620    | 2620    | 2620    |
| Adj. $R^2$            | 0.187   | 0.471   | 0.573   | 0.607   |

t stats in parentheses; "DSC" is the Distance to State Capital (i.e. a control); All regressions include state FE.

# $\overline{\mathsf{RTR}}$ densities, after controls, by $I_{\mathit{far}} = \{0,1\}$



#### Main Figure for Municipality Pairs based on RTR



## RTR densities under Municipality-Pairs approach



# dln(EarningsPremia) densities by $I_{far} = \{0,1\}$



#### Effect on Earnings Premia [Young] by $I_{far} = \{0,1\}$

| $dln(EarnP)_{t,1991}$ | 2000    | 2005    | 2010    | 2015       |  |
|-----------------------|---------|---------|---------|------------|--|
| RTR                   | -1.5*** | -2.5*** | -3.0*** | -3.1***    |  |
|                       | (-4.4)  | (-6.6)  | (-7.1)  | (-6.5)     |  |
| Ifar=1                | -0.0    | -0.0    | -0.1    | $-0.1^{*}$ |  |
|                       | (-0.6)  | (-1.4)  | (-1.5)  | (-1.7)     |  |
| $Ifar=1 \times RTR$   | 0.6     | 1.2***  | 1.6***  | 1.8***     |  |
|                       | (1.4)   | (3.1)   | (3.4)   | (3.3)      |  |
| Pre-Trend             | -0.3*** | -0.3*** | -0.3*** | -0.3***    |  |
|                       | (-4.8)  | (-3.9)  | (-4.0)  | (-3.4)     |  |
| DSC                   | -0.0    | -0.0    | -0.0    | -0.0       |  |
|                       | (-0.8)  | (-1.2)  | (-1.3)  | (-0.4)     |  |
| $RTR \times DSC$      | 0.1*    | 0.2***  | 0.3***  | 0.2***     |  |
|                       | (1.7)   | (2.9)   | (3.4)   | (2.6)      |  |
| N                     | 2571    | 2571    | 2571    | 2571       |  |
| Adj. $R^2$            | 0.312   | 0.509   | 0.584   | 0.605      |  |

t stats in parentheses. DSC stands for Distance to State Capital.



#### Effect on Earnings Premia [Young] by $I_{far} = \{0, 1\}$

